• Công Nghệ
  • Ẩm Thực
  • Kinh Nghiệm Sống
  • Du Lịch
  • Hình Ảnh Đẹp
  • Làm Đẹp
  • Phòng Thủy
  • Xe Đẹp
  • Du Học
thể thao

Lý thuyết Hàm số lượng giác và đồ thị - SGK Toán 11 Chân trời sáng tạo

18:25 08/06/2024

1. Hàm số lượng giác

  • Quy tắc đặt tương ứng mỗi số thực x với số thực sinx được gọi là hàm số sin, kí hiệu y = sinx. Tập xác định của hàm số sin là (mathbb{R}).
  • Quy tắc đặt tương ứng mỗi số thực x với số thực cosx được gọi là hàm số cos, kí hiệu y = cosx. Tập xác định của hàm số côsin là (mathbb{R}).
  • Hàm số cho bằng công thức (y = frac{{sin alpha }}{{cos alpha }})được gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là (mathbb{R}backslash left{ {frac{pi }{2} + kpi |k in mathbb{Z}} right}).
  • Hàm số cho bằng công thức (y = frac{{cos alpha }}{{sin alpha }}) được gọi là hàm số côtang, kí hiệu là y = cotx. Tập xác định của hàm số côtang là (mathbb{R}backslash left{ {kpi |k in mathbb{Z}} right}).

2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

a, Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

Hàm số f(x) được gọi là hàm số chẵn nếu (forall x in D) thì ( - x in D) và (f( - x) = f(x)). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.

Hàm số f(x) được gọi là hàm số lẻ nếu (forall x in D) thì ( - x in D) và (f( - x) = - f(x)). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

b, Hàm số tuần hoàn

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T ( ne ) 0 sao cho với mọi (x in D) ta có (x pm T in D) và (f(x + T) = f(x))

Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

* Nhận xét:

Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2(pi ).

Các hàm số y = tanx, y=cotx tuần hoàn chu kì (pi ).

3. Đồ thị của các hàm số lượng giác

a, Hàm số y = sinx

  • Tập xác định là (mathbb{R}).
  • Tập giá trị là [-1;1].
  • Là hàm số lẻ và tuần hoàn chu kì 2(pi ).
  • Đồng biến trên mỗi khoảng (left( { - frac{pi }{2} + k2pi ;frac{pi }{2} + k2pi } right)) và nghịch biến trên mỗi khoảng (left( {frac{pi }{2} + k2pi ;frac{{3pi }}{2} + k2pi } right)).
  • Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.

b, Hàm số y = cosx

  • Tập xác định là (mathbb{R}).
  • Tập giá trị là [-1;1].
  • Là hàm số chẵn và tuần hoàn chu kì 2(pi ).
  • Đồng biến trên mỗi khoảng (left( { - pi + k2pi ;k2pi } right)) và nghịch biến trên mỗi khoảng (left( {k2pi ;pi + k2pi } right)).
  • Có đồ thị là một đường hình sin đối xứng qua trục tung.

c, Hàm số y = tanx

  • Tập xác định là (mathbb{R}backslash left{ {frac{pi }{2} + kpi |k in mathbb{Z}} right}).
  • Tập giá trị là (mathbb{R}).
  • Là hàm số lẻ và tuần hoàn chu kì (pi ).
  • Đồng biến trên mỗi khoảng (left( { - frac{pi }{2} + kpi ;frac{pi }{2} + kpi } right)), (k in mathbb{Z}).
  • Có đồ thị đối xứng qua gốc tọa độ.

d, Hàm số y = cotx

  • Tập xác định là (mathbb{R}backslash left{ {kpi |k in mathbb{Z}} right}).
  • Tập giá trị là (mathbb{R}).
  • Là hàm số lẻ và tuần hoàn chu kì (pi ).
  • Đồng biến trên mỗi khoảng (left( {kpi ;pi + kpi } right)), (k in mathbb{Z}).
  • Có đồ thị đối xứng qua gốc tọa độ.

  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Trang thông tin tổng hợp melodious

Website melodious là blog chia sẻ vui về đời sống ở nhiều chủ đề khác nhau giúp cho mọi người dễ dàng cập nhật kiến thức. Đặc biệt có tiêu điểm quan trọng cho các bạn trẻ hiện nay.

© 2025 - melodious

Kết nối với melodious

vntre
vntre
vntre
vntre
vntre
Lịch âm hôm nay 789club Sun win
  • Công Nghệ
  • Ẩm Thực
  • Kinh Nghiệm Sống
  • Du Lịch
  • Hình Ảnh Đẹp
  • Làm Đẹp
  • Phòng Thủy
  • Xe Đẹp
  • Du Học